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a b s t r a c t

The exact vibration modes and natural frequencies of planar structures and mechan-

isms, comprised Euler–Bernoulli beams, are obtained by solving a transcendental, non-

linear, eigenvalue problem stated by the dynamic stiffness matrix (DSM). To solve this

kind of problem, the most employed technique is the Wittrick–Williams algorithm,

which preserves the internal degrees-of-freedom for all members in the model, the

present study offers an alternative to the use of this algorithm. The new proposed

eigenvalue problem presents no poles, so the roots of the problem can be found by any

suitable iterative numerical method. By avoiding a standard formulation for the DSM,

the local mode shapes are directly calculated and any extension to the beam theory can

be easily incorporated. It is shown that the method here adopted leads to exact

solutions, as confirmed by various examples. Extensions of the formulation are also

given, where rotary inertia, end release, skewed edges and rigid offsets are all included.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

A wide range of practical and advanced structures are made by assembling beams. These skeletal structures require very
often a dynamic analysis to determine their natural frequencies and vibration modes. This is usually performed using the
finite element method, FEM, which requires a large number of elements when high order natural frequencies are sought.
Analytical solutions for Euler–Bernouli beam vibration are available though and are not dependent on the domain
partitioning. Hence, it is possible to determine natural frequencies and modes of vibrations of structures comprised beams
solely by analytical methods. But this is a difficult task since the associated eigenvalue problem, which uses the so-called
(exact) dynamic stiffness matrix, DSM, is non-linear and transcendental.

Wittrick and Williams [1] were the ones who developed what seems to be a unique algorithm [2–11] to extract the
eigenvalues and modes of the DSM. The W–W algorithm detects the number of natural frequencies below a given cut-off
frequency, similar to the Sturm sequence in linear eigenvalue problems [11]. By knowing the number of frequencies,
successive applications of the W–W algorithm lead to a range of frequencies in which the natural ones lie. A standard
method, as the bi-section, is then used to obtain accurate values for the natural frequencies. The natural vibration modes
are calculated independently afterwards, with the additional problem of obtaining the local modes, i.e. the individual
vibration of each structural element [9].
All rights reserved.
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As a consequence of the exact eigenvalue problem, there will be a finite number of global degrees of freedom, DOF,
corresponding to the model nodes. There will also be an infinite local DOFs representing the internal displacements of each
individual element. The usual way to obtain the DSM is to eliminate the local DOFs, leaving the problem based only on the
displacement of the model nodes [2–6]. This leads, however, to some difficulties. First of all, the determinant of the DSM
has zeros associated only with the natural frequencies where nodal displacements are at play. It presents poles in the
natural frequencies where there is no nodal displacement, leaving local modes with internal displacements. As a
characteristic of this numerical problem, the local natural modes cannot be obtained directly from the equilibrium
equations yielded by the DSM.

It is worth noting that the presence of poles refrains one of using common algorithms to extract the roots of the
frequency equation. This leads to the nearly compulsory use of the W–W algorithm and the inherited difficulty in obtaining
the local modes [9,12–14].

Bearing in mind these remarks, the key point of this work is to formulate the eigenvalue problem of a beam-like
structure without the elimination of the internal DOF. Instead, we work with a vector that contains the nodal DOF as well as
the integration constants of the analytical solution of each beam member. By so proceeding, the two major difficulties
commented above are overcome since the posed problem presents no poles. This allows the use of simpler algorithms to
extract the roots of the frequency equation. Also, the local modes are directly calculated from the dynamic equilibrium.

In considering the general character and flexibility of this new formulation for the eigenvalue problem, it is somewhat
easier to add distributed rotatory inertia for the elements, local concentrated masses and stiffeners. Likewise, it is possible
to implement rigid offset, end releases and to prescribe null displacements in directions other than the global ones, as it
will be shown. These aspects of dynamic analysis of skeletal structures are difficult to be taken into consideration using the
traditional DSM with the W–W algorithm [2,3,6,7]. More recently, Refs. [15–17] defined a new dynamic stiffness matrix,
called K1, which eliminates the poles from the associated eigenvalue problem. However, this method requires further
development in order to include rigid off-set and end release in its formulation.

In the three following sections, the basic equations of the dynamic eigenvalue problem are presented. Next, we provide
a few examples where the various features of the present formulation are explored, always comparing the exact results
with the ones obtained via FEM. Different features of the problem are covered in the Appendices, with rotatory inertia, end
release, skewed edges and rigid offset being developed in the framework of the present formulation.

2. Basic equations

We now present the formulation adopted in this work. We consider Euler–Bernouli beam elements which, assembled in
any number in a plane, form a structure. Generally speaking, a computer programme to handle such beam elements has the
same characteristics as the one found in a FEM programme. The FEM adopts shape functions to represent the internal
element displacements. In our method we use the exact dynamic equilibrium equation so stiffness and mass are exactly
taken into account and no mesh refinement is necessary.

The method requires six extra unknowns per element, apart from the joint displacements, i.e. the integration constants.
This extra computational effort is well compensated by the use of rather few elements when compared to the number
required by the FEM.

Now consider the beam in Fig. 1 with a prismatic and constant cross-section, A, moment of inertia, I, and made of a
single isotropic linear elastic material with elastic modulus, E. It can be shown [18], by solving the axial and transverse
dynamic governing equation, that the axial, u, and transverse, v, vibration of a beam element i in free vibration are given by

uiðx; tÞ ¼ ½AisinðbixÞ þ BicosðbixÞ�sinðotÞ (1)

and

viðx; tÞ ¼ ½Cisinðb ixÞ þ DicosðbixÞ þ Eisinhðb ixÞ þ FicoshðbixÞ�sinðotÞ: (2)

The displacements and the forces at the end of a typical element i for the local coordinate system, Fig. 1, are given,
respectively, by

Q iðtÞ ¼ fq1ðtÞ; q2ðtÞ; . . . ; q6ðtÞg
T (3)

and

PiðtÞ ¼ fp1ðtÞ; p2ðtÞ; . . . ; p6ðtÞg
T; (4)

with the integration constants given by the vector

Gi ¼ fAi;Bi;Ci;Di; Ei; Fig
T: (5)

Considering now the Euler–Bernouli beam theory, normal force, cross-section rotation, bending moment and shear force
can be related to the displacements ui and vi. This allows the above displacement and force vectors to be written as

Q iðtÞ ¼ /QiGisinðotÞ (6)
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Fig. 1. A beam element. Internal and end (a) displacements and (b) forces.
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and

PiðtÞ ¼ /PiGisinðotÞ; (7)

with

/Q i
¼

�sinðliÞ cosðliÞ 0 0 0 0

sinðliÞ cosðliÞ 0 0 0 0

0 0 �sinðliÞ cosðliÞ �sinhðliÞ coshðliÞ

0 0 sinðliÞ cosðliÞ sinhðliÞ coshðliÞ

0 0 b icosðliÞ b isinðl iÞ bicoshðliÞ �bisinhðl iÞ

0 0 b icosðliÞ �b isinðliÞ bicoshðliÞ bisinhðl iÞ

2
6666666664

3
7777777775

(8)

and

/Pi
¼

gicosðliÞ gisinðliÞ 0 0 0 0

gicosðliÞ �gisinðliÞ 0 0 0 0

0 0 �b igicosðliÞ �b ig isinðliÞ bigicoshðliÞ �bigisinhðliÞ

0 0 �b igicosðliÞ b ig isinðl iÞ bigicoshðliÞ �bigisinhðliÞ

0 0 gisinðliÞ �gicosðliÞ �g isinhðliÞ gicoshðliÞ

0 0 �gisinðliÞ gicosðl iÞ �g isinhðliÞ gicoshðliÞ

2
66666666664

3
77777777775
; (9)

where

li ¼ biLi=2; li ¼ biLi=2 (10)

and

gi ¼ biEAi; gi ¼ b
2

i EIi: (11)

The vibration frequency is related to the beam properties and displacement parameters by

o2 ¼ b2
i ðEAi=miÞ ¼ b

4

i ðEIi=miÞ; 8i; (12)

when disregarding rotatory inertia influence on the beam dynamics. For higher frequencies, this effect may be important
and Appendix A presents a more complete derivation.
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2.1. Dynamic stiffness matrix

From Eqs. (6) and (7), a force–displacement relation for the beam element i in local coordinates can be established at once as

PiðtÞ ¼ KDi
Q iðtÞ; (13)

where

KDi
¼ ½/Pi

/�1
Q i
� (14)

is the dynamic stiffness matrix for the element i.

2.2. From local to global coordinate systems

Fig. 2 suggests that it is necessary to convert the local degree-of-freedom of the various elements to the global
coordinates. Accordingly, the end displacements, Q , and forces, P, are transformed according to

Q �i ðtÞ ¼ RQ i
ðaiÞQ iðtÞ (15)

and

P�i ðtÞ ¼ RPi
ðaiÞPiðtÞ; (16)

where RQ i
ðaiÞ and RPi

ðaiÞ are well known transformation matrices relating local to global degrees of freedom of an element
forming an angle ai with the global coordinate system.

2.3. Beam elements connectivity

A single end displacement and load vectors, with M elements containing all N degrees-of-freedom of the model, can be
assembled as

Q �ðtÞ ¼ fQ �1ðtÞ;Q
�

2ðtÞ; . . . ;Q
�

MðtÞg
T (17)
αi

1*

3*

5*

2*

4*

6*

αi3

1

5

2

4

6

X (Global coordinate system)

Y

α i

x

y

1
3

5

2
4

6

α  i

1*

3*

5*

2*

4*

6*

Local DOFs Global DOFs

Fig. 2. (a) End displacement and (b) loads conversion to the global coordinate system.
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and

P�ðtÞ ¼ fP�1ðtÞ;P
�
2ðtÞ; . . . ;P

�
MðtÞg

T; (18)

respectively, allowing to establish the relationships

Q �ðtÞ
6M�1

¼ wQ
6M�N

Q ðtÞ
N�1

(19)

and

PðtÞ
N�1
¼ wP

N�6M

P�ðtÞ
6M�1

; (20)

where Q and P are the global node displacement and load vectors, respectively. The matrices wQ and wP are obtained from
the connectivity matrix and are formed only by zeroes and ones.

It should be noted that, from P�, P follows from the nodes equilibrium. Also, it can be shown that

wP ¼ wT
Q : (21)

2.4. Nodal displacements and loads

Considering the assembled beam structure with N degrees-of-freedom, the global displacements and loads can be
written as

Q ðtÞ ¼ fq1ðtÞ; q2ðtÞ; . . . ; qNðtÞg
T (22)

and

PðtÞ ¼ fp1ðtÞ; p2ðtÞ; . . . ; pNðtÞg
T: (23)

Now, in the case of free vibration, motion is opposed only by the actions of the concentrated mass and concentrated
stiffness in each node so that

PðtÞ ¼ �XðoÞQ ðtÞ: (24)

Here, OðoÞ can be obtained by considering that in a node n it may occur a translational spring, kn, acting in a direction gn,
measured in relation to the global system, X, a rotational spring, kz

n, in the global axis Z, two translational masses, mx
n and

my
n with degrees of freedom in the global directions X and Y, respectively, and a rotational mass, mz

n, in the global direction
Z. Similar to FEM formulation, it can be shown that

X
N�N
ðoÞ ¼ diag½ðKn �o2MnÞ�n¼1;2;...;N0

; (25)

where N0 is the number of nodes and

Kn ¼

kn cos2 gn knsin gncosgn 0

knsin gncosgn knsin2gn 0

0 0 kz
n

2
664

3
775; (26)

Mn ¼ diag½mx
n; my

n; mz
n�: (27)

We remark that these masses aim to represent any rigid body connected to a node n. More precisely, the centre of gravity of
the body must coincide with the node position.

2.5. End displacements and loads

The integration constants present in all the M elements can be assembled in a single vector,

H ¼ fGT
1;G

T
2; . . . ;G

T
Mg

T: (28)

Using Eqs. (6) and (15), the end displacement in global coordinates reads

Q �ðtÞ
6M�1

¼ UQ
6M�6M

H
6M�1

sinðotÞ; (29)

where

UQ ¼ diag½RQ i
/Q i
�i¼1;2;...;M : (30)
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Likewise, the end load vector in global coordinates can be presented in the compact form

P�ðtÞ
6M�1

¼ UP
6M�6M

H
6M�1

sinðotÞ; (31)

with

UP ¼ diag½RPi
/Pi
�i¼1;2;...;M : (32)

3. The eigenvalue problem

The nodal displacement vector, Q ðtÞ, for an harmonic motion of frequency o, reads

Q ðtÞ
N�1
¼ Q 0

N�1
sinðotÞ; (33)

which can be substituted in Eqs. (19), (20), (24), (29) and (31) to yield

UQ
6M�6M

H
6M�1
� wQ

6M�N

Q 0
N�1
¼ 0

6M�1
(34)

and

wP
N�6M

UP
6M�6M

H
6M�1
þ X

N�N
Q 0
N�1
¼ 0

N�1
: (35)

UQ , wQ , wP, UP and X are known matrices and to obtain the unknowns, Q 0, it is only necessary to replace Eq. (34) by
Eq. (35), giving

KDðo2Þ|fflfflfflffl{zfflfflfflffl}
N�N

Q 0|{z}
N�1

¼ 0|{z}
N�1

; (36)

where

KDðo2Þ|fflfflfflffl{zfflfflfflffl}
N�N

¼ WP|{z}
N�6M

UPðoÞ|fflfflffl{zfflfflffl}
6M�6M

U�1
Q ðoÞ|fflfflfflffl{zfflfflfflffl}

6M�6M

wQ|{z}
6M�N

þXðo2Þ|fflfflffl{zfflfflffl}
N�N

; (37)

being KD the so-called global dynamic stiffness matrix.
Existence of non-trivial solutions to Eq. (36) are guaranteed when

pðo2Þ ¼ det½KDðo2Þ� ¼ 0 Q 0a0 roots (38)

and

pðo2Þ ¼ det½KDðo2Þ�-1 Q 0 ¼ 0 poles: (39)

It is important to notice that in the finite element method the eigenvalue problem presents itself in the non-transcendental,
linear, explicit form

½K�o2M�Q 0 ¼ 0; (40)

with the condition for the existence of a non-trivial solution given by

pðo2Þ ¼ det½K�o2M� ¼ 0; (41)

where the mass, M, and the stiffness, K matrices have constant coefficients and the eigenvalue l ¼ o2 is obtained
by solving Eq. (41). Alternatively, an inverse vector iterative procedure applied to Eq. (40) gives the eigenvalues and
respective eigenvectors. This procedure, where the eigenvectors and eigenvalues are obtained concomitantly, forms the
basis of most of the well established methods, e.g. Lanczos and subspace iteration [19], used in commercial finite element
codes. Such methods are only possible because the stiffness and mass properties are decoupled, which is not the case for
the DSM.

For the particular case of beam finite elements, the stiffness matrix using cubic displacement interpolation is exact but
not the mass matrix. Therefore, it is not possible in FEM to perform an exact modal solution.

On the other hand, for various basic structures, if the eigenvalue problem in Eqs. (36)–(39) can be solved, it is possible to
obtain an exact modal solution. However, in this case, it is not possible to use well established numerical methods.

One possibility, employed in the literature at large, consists in obtaining the roots and poles of Eqs. (38) and (39). But
this leads to some disadvantages:
(1)
 in order to obtain the dynamic stiffness matrix in its explicit form, it is necessary to evaluate the inverse of UQ , of order
6M, which may be computational intensive;
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(2)
 the elimination of the integration constants, H, as unknowns of the eigenvalue problem, refrains one of the direct
calculation of the local modes (Q 0 ¼ 0, Ha0);
(3)
 the fact that det½KDðo2Þ� has zeros and poles for the natural frequencies [9], refrains one from using most of the
established methods for extracting eigenvalues leaving, as the only option, the so called W–W algorithm [1].
In this work, these limitations are circumvented by writing the eigenvalue problem in Eqs. (34) and (35) as

UQ ðo2Þ
6M�6M

�wQ
6M�N

wPðo2ÞUP
N�6M

Xðo2Þ
N�N

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼Wðo2Þ

H
6M�1

Q 0
N�1

8><
>:

9>=
>;|fflfflfflfflfflffl{zfflfflfflfflfflffl}

ð6MþNÞ�1

¼ 0
ð6MþNÞ�1

; (42)

where one should seek for values of o so that

detfWðo2Þg ¼ 0: (43)

The above method does not present poles so that the roots of Eq. (43) can be obtained progressively from the smaller to a
larger value, as specified by giving a cut-off frequency or a desired number of frequencies. Once a natural frequency is
established, one returns to Eq. (42) to obtain the integration constants, H, and modal nodal displacements, Q 0, vectors.

It is important to remark that the present method requires to solve an eigenvalue problem of order 6M þ N, instead of
one of order N, as when using the finite element method. This apparent drawback is compensate by far when considering
that only the natural nodes need to be defined. It is not necessary to refine the mesh, as in FEM, specially when high order
frequencies are sought.

4. Numerical procedures

To extract the eigenvalues of the problem stated by Eq. (43), a numerical procedure comprising two steps was established.
Considering the examples in Fig. 3, the detection of the peaks caused by the various natural frequencies in the function

gðf Þ ¼ �logfjdet½Wðo2Þ�jg; (44)
Fig. 3. Searching for the natural frequencies. Cases of Tables 1 (top) and 2 (bottom).
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is attained by sweeping it from 0 to a given cut-off frequency, fMAX , at constant intervals Df , where f ¼ o=2p. When
det½Wðo2Þ� approaches zero, a peak occurs in the function gðf Þ, which indicates that there is a natural frequency in the
interval ½f � Df ; f þ Df �. This procedure allows the calculation of both simple and multiple roots of Eq. (43). In the
exceptional case where gðf Þ tends to a very large positive number, i.e. det½Wðo2Þ�-1, an exact natural frequency value
was found.

Differently from the bisection method, the present procedure handles even multiple roots of Eq. (43). However, it does
not allow the calculation of the root multiplicity. Hence, it is necessary for another algorithm to find all the natural
frequencies below a given cut-off frequency. The W–W algorithm could also be used if it were not for the difficulties it
presents in handling the configurations with rigid off-set and end-release explored here. As for the sweeping method, it is
very much time consuming, particularly when the first natural frequency is high. This is so because the method requires
small frequency steps.

Once all the intervals of natural frequencies in the range ½0� fMAX � are determined, a next step is necessary in order to
narrow the interval ½f �Df ; f þDf � using the secant method [19] with a small error tolerance, typically tolp ¼ 10�d, with
d ¼ 16. Accordingly, defining pm as the peak frequency found from the analysis of the function gðf Þ and using

f ð0Þ1m ¼ pm � Df=2 and f ð0Þ2m ¼ pm þ Df=2 (45)

as departure values, very accurate values for the natural frequency can be obtained by

f ðkÞnm ¼ f ðk�1Þ
2m �

f ðk�1Þ
2m � f ðk�1Þ

1m

1�
detfW½ð2pf ðk�1Þ

1m Þ
2
�g

detfW½ð2pf ðk�1Þ
2m Þ

2
�g

; (46)

with the iterations k being stopped when the difference between the current and previous value of fnm fulfils the chosen
tolerance.

Once the natural frequencies are known, the correspondent eigenmode, i.e. the natural vibration mode, can be obtained
by linearising the eigenvalue problem. Thus, for each natural frequency, fiðHzÞ, one can define

l1i ¼ ðfi=2pÞ2ð1� tolpÞ; (47)

l2i ¼ ðfi=2pÞ2ð1þ tolpÞ; (48)

WM
i ¼ ½Wðl1iÞ �Wðl2iÞ�=ðl2i � l1iÞ (49)

and

WK
i ¼ Wðl1iÞ þ l1iW

M
i ; (50)

with l ¼ o2.
To obtain the mode i, it is only necessary to solve the linear eigenvalue problem

½WK
i � lWM

i �
Hi

Q 0i

( )
¼ 0; (51)

which will yield both the nodal displacement vector, Q 0i
, and the integration constants vector, Hi, from which the internal

displacements of each element is determined.
It is remarked that the eigenvalue problem in Eq. (51) can be solved by any appropriate method used for linear

problems. Also, it has a finite number of solutions; among them, one should take only the one whose natural frequency, f̃ i,
is the closest to fi. A tolerance between f̃ i and fi of 10�d=2 is recommended.

5. Examples and discussion

The numerical procedure described before was implemented in the code VIGENE [20] using the MATLAB platform. The
programme has some features which allow the analysis of any plane structure made of beams, whose nodes may have
springs and concentrated masses. Skewed supports, end release and rigid off-sets are also considered, as detailed in the
Appendices.

The first two examples here are simple enough to allow a comparison of the present formulation with analytical
solutions. Other more involved examples are compared only with FEM solutions using the software ANSYS.

Table 1 shows the results for a simply supported beam, with the properties given in the caption. As expected from the
present method, the results given by the programme VIGENE are mesh independent and exact, in contradistinction with
the FEM results.

Let us now consider the simply supported square frame in Fig. 4 with the properties listed in Table 2. It is clear from the
results in Table 2 that the methodology described here is capable of matching the analytical solution, which is approached
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MODE 1
P-P-1

MODE 2
C-P-1

MODE 3
C-C-1

MODE 4
P-P-2

MODE 6
C-P-2

P-P C-C

Single beam analogy (X-X-n): X = C-clamped or P-pinned and n = modal order

C-P

Fig. 4. Mode shapes for the square frame in Table 2. Analytical solution based on single beam analogy applied to a single edge.

Table 2
Natural frequencies (Hz) for a simply supported frame (single beam analogy).

Mode Roots multiplicity b.c. Mode Type Analyt. FEM VIGENE Q 0

1 1 S–S 1 Lateral 1.0000 1.0000 1.0000 a0
2 2 C–S 1 Lateral 1.5622 1.5622 1.5622 a0
3 1 C–C 1 Lateral 2.2669 2.2669 2.2669 ¼ 0
4 1 S–S 2 Lateral 4.0000 4.0000 4.0000 a0
5 4 S–S 1 Axial 5.0000 4.9998 5.0000 ¼ 0
6 2 C–S 2 Lateral 5.0625 5.0625 5.0625 a0

All four members with the same properties as in Table 1. The FEM analysis was performed in ANSYS with no rotatory inertia and 100 elements per side.

The VIGENE solutions, also with no rotatory inertia effects, uses only 1 element per side.

Table 1
Natural frequencies (Hz) for a simply supported beam with no axial translation of the supports.

Num. of elem. Mode 1 2 3 4 5

Type Bending Bending Axial Bending Axial

i ¼ 1 2 1 3 2

1 VIGENE 1.0000 4.0000 5.0000 9.0000 10.000

FEM – – – – –

10 VIGENE 1.0000 4.0000 5.0000 9.0000 10.000

FEM 0.9999 3.9995 4.9795 8.9939 9.8363

100 VIGENE 1.0000 4.0000 5.0000 9.0000 10.000

FEM 1.0000 4.0000 4.9998 9.0000 9.9984

Analytical 1.0000 4.0000 5.0000 9.0000 10.000

L ¼ 10, EA ¼ p2104, EI ¼ 4� 104, m ¼ p2. Analytical solution for the ith mode: Axial -fi ¼ ði=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EA=mL2

q
¼ 5i, Bending -fi ¼ ðpi2=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=mL4

q
¼ i2. The

FEM analysis was performed in ANSYS using lumped mass and no rotatory inertia.

C.A.N. Dias, M. Alves / Journal of Sound and Vibration 328 (2009) 586–606594
by the FEM results only when mesh refinement of 100 finite elements is considered. It is emphasised with this example
that our method detects multiple roots as well as local modes for which there is no nodal displacement ðQ 0 ¼ 0Þ.

The square frame in Fig. 4 has its all four corners simply supported so only rotations are allowed. Hence, analytical
solutions can be obtained directly from the beam theory when considering a combination of simply supported and
clamped cases. For example, the first and second natural frequencies of the frame in the figure corresponds to the lateral
vibration of a beam simply supported in both sides and a beam simply supported in one side and clamped in the other,
respectively.

Let us now consider the six global DOF structure in Fig. 5. The results of the analysis listed in Table 3 show that only a
high mesh density allows the FEM method to approach the exact solution by VIGENE.

Finally, we analyse a two storey building where lateral flexible constraints and concentrated masses are considered,
Fig. 6. The results in Table 4 again clearly indicate the good performance of the VIGENE method. Also, these results explore
the influence of rotatory inertia, as theoretically explained in the Appendices.
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Table 3
Natural frequencies (Hz) for the structure in Fig. 5.

Nodes Mode 1 2 3 4 5

4 VIGENE 0.89113 1.1256 1.3211 2.0395 2.3711

4 FEM 0.85010 N/A 1.3220 2.1349 N/A

31 FEM 0.89156 1.1253 1.3179 2.0373 2.3703

301 FEM 0.89114 1.1256 1.3211 2.0395 2.3711

All members with the same properties as in Table 1. No rotatory inertia neither in VIGENE nor in the FEM analysis, which employs lumped mass matrix.

M M

MM

K

K

10

10

10

Fig. 6. A two-storey building model with lateral flexible constraints.

Fig. 5. Geometry of a frame.
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Table 4
Natural frequencies (Hz) for the building model with the dimensions in Fig. 6 and members properties, other than length, as in Table 1.

Case Rotat. inertia Num. nodes mode- 1 2 3 4 5

M ¼ 0, K ¼ 0 No 6 VIGENE 0.25487 0.72793 0.81989 0.97207 1.1196

798 FEMa 0.25487 0.72792 0.81989 0.97206 1.1196

Yes 6 VIGENE 0.25480 0.72526 0.81584 0.96253 1.1046

798 FEMb 0.25464 0.72526 0.81551 0.96152 1.1036

M ¼ 100, K ¼ 0 No 6 VIGENE 0.19479 0.57468 0.65871 0.91720 0.98390

798 FEMa 0.19479 0.57468 0.65871 0.91720 0.98389

Yes 6 VIGENE 0.19477 0.57371 0.65757 0.90995 0.97537

798 FEMb 0.19468 0.57329 0.65771 0.91012 0.97451

M ¼ 100, K ¼ 5000 No 6 VIGENE 0.49052 0.62485 0.72733 0.92874 0.99244

798 FEMa 0.49052 0.62485 0.72732 0.92874 0.99243

Yes 6 VIGENE 0.49006 0.62416 0.72603 0.92002 0.98403

798 FEMb 0.49019 0.62427 0.72516 0.92038 0.98316

a ANSYS with lumped mass matrix and no rotatory inertia.
b ANSYS with consistent mass matrix and rotatory inertia.
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6. Conclusion

In this article, an alternative to the W–W algorithm was developed in order to solve the eigenvalue problem related to
frame structure vibration calculation. It is shown in detail in the Appendices how some special effects can be included in a
more general formulation. A new definition for the DSM is proposed which yields no poles in its determinant. This allows
one to use an algorithm which does not require, differently from the W–W algorithm, the knowledge of the
clamped–clamped natural frequencies for all members in the model, which is particulary difficult in the presence of
rigid offset and end release.

As an additional advantage, the present formulation preserves an accurate representation of the mode shapes by
working directly with the integration constants of each element of the entire model. Hence, in a further evaluation of forced
response of a structure, it is possible an accurate calculation of the dynamic stress levels.

Appendix A. Rotatory inertia

Rotatory inertia, k, can be considered by solving the equilibrium equation

m €vðx; tÞ þ EI@4vðx; tÞ=@x4 � k@2 €vðx; tÞ=@x2 ¼ 0; (A.1)

whose solution is

vðx; tÞ ¼ ½CsinðbT xÞ þ DcosðbT xÞ þ EsinhðbHxÞ þ FcoshðbHxÞ�sinðotÞ; (A.2)

where now the b coefficients are different for the trigonometric and hyperbolic functions.
Substituting Eq. (A.2) into Eq. (A.1) gives

o2 ¼
b4

T EI

mþ kb2
T

¼
b4

HEI

m� kb2
H

; (A.3)

or

b2
T ¼ ð1=2Þ½þo2k=EI þ

ffiffiffiffi
D
p
� (A.4)

and

b2
H ¼ ð1=2Þ½�o2k=EI þ

ffiffiffiffi
D
p
�; (A.5)

with

D ¼ ½o2ðk=EIÞ�2 þ 4½o2ðm=EIÞ�40: (A.6)

Bearing in mind Eqs. (8) and (9), the terms related to the trigonometric functions become now b ¼ bT and l ¼ bT L=2,
whereas the ones related to the hyperbolic functions are now b ¼ bH and l ¼ bHL=2. Note that, if k ¼ 0, the no rotatory case
is recovered, i.e. bT ¼ bH ¼ b and lT ¼ lH ¼ l.

As a general rule, rotatory inertia does not affect the low order natural frequencies of slender beams. For short beams or
for high natural frequencies, the effect can be significant. This can be seen in Table 3, where in the first mode the error is
around 0.03 percent, while for the fifth mode this errors increase to almost 1.4 percent. Transverse shear effects are also
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important for short beams or high order modes but the present formulation has not been yet extended to the Timoshenko
beam theory.

Appendix B. End release

B.1. Relationship between forces and integration constants

To relax the loads in the element end, consider Eq. (7), with index i dropped for the sake of simplicity,

P
6�1
¼ /P

6�6
G

6�1
: (B.1)

This equation can be partitioned according to

Pa
na�1

Pb
1�1

Pc
nc�1

8>>>><
>>>>:

9>>>>=
>>>>;
¼

/Paa
na�na

/Pab
na�1

/Pac
na�nc

/Pba
1�na

/Pbb
1�1

/Pbc
1�nc

/Pca
nc�na

/Pcb
nc�1

/Pcc
nc�nc

2
666664

3
777775

Ga
na�1

Gb
1�1

Gc
nc�1

8>>>><
>>>>:

9>>>>=
>>>>;
; (B.2)

with naþ 1þ nc ¼ 6, from which the following equations follow:

Pa ¼ /PaaGa þ /PabGb þ/PacGc ; (B.3)

Pb ¼ /PbaGa þ /PbbGb þ/PbcGc (B.4)

and

Pc ¼ /PcaGa þ/PcbGb þ/PccGc: (B.5)

Under the relaxation condition Pb ¼ 0; 8G and defining m ¼ 1=/Pbb
, from Eq. (B.4), it follows

Gb ¼ �m½/Pba
Ga þ /Pbc

Gc�; (B.6)

which can be substituted in Eq. (B.3) to give

Pa ¼ ½/Paa
� m/Pab

/Pba
�Ga þ ½/Pac

� m/Pab
/Pbc�Gc (B.7)

and in Eq. (B.5) to give

Pc ¼ ½/Pca
� m/Pcb

/Pba
�Ga þ ½/Pcc

� m/Pcb
/Pbc
�Gc : (B.8)

Knowing that Pb ¼ 0, Eq. (B.2) becomes

P
6�1
¼ /̂P

6�6

C
6�1

; (B.9)

where

/̂P ¼

½/Paa
� m/Pab

/Pba
�

na�na

0
na�1

½/Pac
� m/Pab

/Pbc
�

na�nc

0
1�na

0
1�1

0
1�nc

½/Pca
� m/Pcb

/Pba
�

nc�na

0
nc�1

½/Pcc
� m/Pcb

/Pbc
�

nc�nc

2
666664

3
777775: (B.10)

B.2. Relationship between displacement and integration constants

In a similar manner, one can obtain the matrix /Q under the effect of the end release as

Q
6�1
¼ /̂Q

6�6

G
6�1

; (B.11)

where

/̂Q ¼

½/Qaa
� m/Qab

/Pba
�

na�na

0
na�1

½/Qac
� m/Qab

/Pbc
�

na�nc

½/Qba
� m/Qbb

/Pba
�

1�na

0
1�1

½/Qbc
� m/Qbb

/Pbc
�

1�nc

½/Qca
� m/Qcb

/Pba
�

nc�na

0
nc�1

½/Qcc
� m/Qcb

/Pbc
�

nc�nc

2
666664

3
777775: (B.12)
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M

10

10

10

K

Fig. B1. Released structure. EA ¼ 40:0E6, EI ¼ 12:0E6, m ¼ 40 for the horizontal members, EA ¼ 100:0E6, EI ¼ 4:0E6, m ¼ 10, for the vertical members,

M ¼ 100, K ¼ 5:0E4.

Table B1
Natural frequencies (Hz) for the structure in Fig. B1.

Mode VIGENE FEM

6 nodes 600 nodes

1 0.99229 0.99190

2 2.3670 2.3666

3 4.0573 4.0562

4 5.1530 5.1612

5 8.1656 8.1295

VIGENE—with rotatory inertia considered, ANSYS—rotatory inertia considered, consistent mass matrix, finite elements of length 0.1.
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B.3. The eigenvalue problem

Substituting /Qi
and /Pi

by /̂Qi
and /̂Pi

in Eqs. (30) and (32), respectively, one obtains the relaxed version of the
eigenvalue problem given by Eq. (42). The same numerical procedure presented before can be used, just taking care to
eliminate the line and column of the respective relaxed degree of freedom.
B.4. Example

Consider the example in Fig. B1, where the top bending moment on the left end column and the normal force in the first
beam floor are relaxed. The results of this analysis are shown in Table B1.
Appendix C. Skewed edges

C.1. Degree of freedom elimination

Nodes are defined in such a way that their translational degrees of freedom are defined in the global cartesian axis. This
refrains one from modelling supports whose motion is allowed in directions other than the global axis. To overcome this
difficulty, finite element programmes use the so-called constrain equations, where an additional equation relating the DOF
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θ

n

n+1

n+2
n

n+1

≡ 0

−�/2≤ θ ≤�/2

Y

X

�

Fig. C1. Skew edges for the simply supported beam case. (a) Global and (b) local degrees of freedom.

C.A.N. Dias, M. Alves / Journal of Sound and Vibration 328 (2009) 586–606 599
is added. The same approach is used here and, from Fig. C1, we may write

Q jðtÞ ¼ R̆ jQ̆ jðtÞ ) Q̆ jðtÞ ¼ R̆
T

j Q jðtÞ; (C.1)

where

Q jðtÞ ¼ fqnðtÞ;qnþ1ðtÞ; qnþ2ðtÞg
T (C.2)

is the displacement vector of node j before a constrain is applied and

Q̆ jðtÞ ¼ fq̆nðtÞ;0; q̆nþ2ðtÞg
T (C.3)

is the displacement vector, at the same node, after the imposition of the skew edge condition, so that there is no translation
perpendicular to the plane.

Being y the skew edge angle, the rotation matrix is

R̆ j ¼

cosy 0 0

siny 0 0

0 0 1

2
64

3
75 or R̆ j ¼

cosy 0

siny 0

� �
(C.4)

for a simply and clamped skew edge support, respectively. In the clamped case, not shown in Fig. C1, the rotational DOF
should also be removed.

Now, a model with N degrees of freedom and N0 nodes has the displacement nodes vector written as

Q ðtÞ ¼ fq1ðtÞ; q2ðtÞ; . . . ;qNðtÞg
T ¼ fQ 1ðtÞ;Q 2ðtÞ; . . . ;Q N0

ðtÞgT; (C.5)

or

Q ðtÞ
N�1
¼ /N

N�L

Q̆ ðtÞ
L�1

; (C.6)

where

/N ¼ diag½R̆ j� for j ¼ 1;2; . . . ;N0; (C.7)

with LoN being the total number of degrees of freedom resulting from the elimination of all DOF due to the skewed edges.
The transformation in Eq. (C.6) can be equally applied to the load vector, i.e.

P̆ðtÞ
L�1
¼ /T

N
L�N

PðtÞ
N�1

; (C.8)

so that the original eigenvalue problem of Eqs. (34) and (35) changes to

/Q
6M�6M

H
6M�1
� wQ

6M�N

/N
N�L

Q̆ 0
L�1

¼ 0
6M�1

/T
N

L�N

wP
N�6M

/P
6M�6M

H
6M�1
þ/T

N
L�N

X
N�N

/N
N�L

Q̆ 0
L�1
¼ 0

L�1
; (C.9)

where the same numerical strategy used before for the eigensolution is also valid here.
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K

K
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K

� = -45°

γ = -45°

Fig. C2. A structure with a skew edged. Beam properties as in Table 1 and K ¼ 500.

Table C1
Natural frequencies (Hz) of the structure in Fig. C2.

Mode VIGENE FEM

2 elements 20 elements

1 0.54444 0.54450

2 0.75946 0.75564

3 1.5556 1.5234

4 2.2951 2.2104

5 2.4791 2.4260

VIGENE—rotatory inertia considered, ANSYS—rotatory inertia considered, consistent mass matrix, finite elements of length 0.1.
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C.2. Example

The structure in Fig. C2 serves as an example of a simple application of the procedure described in this section, with
Table C1 listing the main results, when adopting the same beam properties as in Table 1.

Appendix D. Rigid offsets

Consider the finite element in Fig. D1 of virtual length LT and stiff ends defined by the dimensions aI , bI , aJ and bJ , so that
the flexible length can be obtained from

L2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

T � ðbI þ bJÞ
2

q
� ðaI þ aJÞ40; (D.1)

with

a ¼ aT � arcsin½ðbI þ bJÞ=LT �: (D.2)

D.1. Relationship between forces and displacements

To consider the stiff ends, Figs. D1 and D2 help in relating the displacements

Q ðtÞ ¼ fq1ðtÞ; q2ðtÞ; . . . ; q6ðtÞg
T (D.3)

and loads

PðtÞ ¼ fp1ðtÞ; p2ðtÞ; . . . ; p6ðtÞg
T (D.4)

in the exterior points I and J with the corresponding values

Q̂ ðtÞ ¼ fq̂1ðtÞ; q̂2ðtÞ; . . . ; q̂6ðtÞg
T (D.5)
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Fig. D1. Beam element with rigid offset.
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Fig. D2. Numbering of (a) displacement and (b) loads.
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and

P̂ðtÞ ¼ fp̂1ðtÞ; p̂2ðtÞ; . . . ; p̂6ðtÞg
T; (D.6)

for the interior points I and J , according to

Q ðtÞ ¼ TQ Q̂ ðtÞ ¼ TQ/Q GsinðotÞ (D.7)
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and

PðtÞ ¼ TPP̂ðtÞ ¼ TP/PGsinðotÞ; (D.8)

where

TQ ¼

1 0 0 0 þbI 0

0 1 0 0 0 �bJ

0 0 1 0 �aI 0

0 0 0 1 0 þaJ

0 0 0 0 1 0

0 0 0 0 0 1

2
666666664

3
777777775

(D.9)

and

TP ¼

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

�bI 0 �aI 0 1 0

0 þbJ 0 þaJ 0 1

2
6666666664

3
7777777775
: (D.10)

D.2. Inertia of the stiff ends

To consider the inertia of the stiff ends, one should rewrite Eq. (D.8) as

PðtÞ ¼ ½TP/P �o2SQ/Q �GsinðotÞ (D.11)

where

SQ ¼ HJU½TQ þ I�; (D.12)

with

H ¼

�2 0 0 0 0 0

0 0 0 þ2 0 0

0 þ2 0 0 0 0

0 0 0 0 �2 0

þbI �aI �2 0 0 0

0 0 0 þbJ �aJ �2

2
6666666664

3
7777777775

(D.13)
Beam Support Structure :

E = 2000 ton/cm2

A = 10×12 = 120 cm2

I = 10×123/12 = 1440 cm4

Model A : Without the
Equipment (M = 0)

Model B : Mass Center and
Flexible Spans not corrected

Model C : Mass Center not
corrected

Model D : Mass Center and
Flexible Spans fixed

“Rigid” Equipment Mass :

M = 4.8E−4 ton.s2/cm
19 cm

50 cm 50 cm

200 cm200 cm

25 cm

� = 8E−9 ton.s2/cm4

Fig. D3. A simple practical example demonstrating the usefulness of rigid offset.
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and

U ¼

1=2 0 0 0 0 0

0 0 1=2 0 0 0

0 0 0 0 1=2 0

0 1=2 0 0 0 0

0 0 0 1=2 0 0

0 0 0 0 0 0

2
666666664

3
777777775
; (D.14)

index i being omitted.
Here,

J ¼ diag½MTI; MTI; MRI; MTJ ; MTJ ; MRJ� (D.15)

is a matrix that contains all the contributions of translational and rotatory inertia of both stiff ends, taking the respective
centres of mass as the reference.
Elements properties

N.
NODE Area aI aJ

I 10-5m4 m

1 2

2 3

3 5

4 6

5 5

6 6

7 4

8 5

9

1

2

3

4

5

6

7

8

9 6

10 7 8

11 8 9

bI and bJ = 0 for all elements

1.0m

1.0m

2.0m

2.5m

4e6 N/m

2e6 N/m 

1 2 3

4 5 6

7 8 9

Relaxed
bending
moment

J 10-3m2

0.75 0.14 0.10 0.10

m

0.75 0.14 0.10 0.20

1.20 0.82 0.10 0.00

3.50 5.00 0.10 0.00

1.50 3.20 0.10 0.10

1.50 3.20 0.10 0.10

4.00 8.50 0.20 0.20

4.00 8.50 0.20 0.20

4.50 9.00 0.25 0.20

5.00 10.5 0.30 0.30

5.00 10.5 0.30 0.30

Inertia

Fig. D4. Cross-section of a ship-like structure.

Table D1
Results for the rigid offset case presented in Fig. D3.

Natural frequencies (Hz)

MODE Model A Model B Model C Model D

VIGENE Ilanko VIGENE Ilanko VIGENE Ilanko VIGENE FEM

(1) (2) (1) (2) (1) (2) (1) (3)

1 10.833 10.833 6.2627 6.2627 9.0552 9.0552 9.0552 9.0542

2 43.531 43.531 43.531 43.531 45.534 45.534 42.253 42.228

3 97.945 97.945 74.858 74.858 115.23 115.23 115.23 115.00

4 174.13 174.13 174.13 174.13 197.55 197.55 164.69 164.30

5 272.07 272.07 228.02 228.02 354.16 354.16 329.59 328.60

(1) VIGENE models with only three nodes and two beams; (2) results from Ilanko [22] using his program ‘‘Newtonian.exe’’; (3) ANSYS solver with 40 equal

finite elements type beam54.
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D.3. Global displacements and loads

To transform the local displacement and loads to the global coordinate system the following standard transformation is
used:

Q �ðtÞ
6M�1

¼ /Q
6M�6M

HsinðotÞ (D.16)
Natural  frequencies (Hz) 

MODE 
VIGENE

9 Nodes

1

2

3

4

(1) ANSYS : based on consistent mass
with rotatory inertia 

MODE 1 

MODE 4 MODE 3 

MODE 2 

FEM (1)

109 Nodes 

86.74687.899

115.28 115.29

190.17 190.38

246.01 245.86

Fig. D5. Natural vibration modes and frequencies for the problem in Fig. D4.
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and

P�ðtÞ
6M�1

¼ ½ /P
6M�6M

�o2 /PQ
6M�6M

�HsinðotÞ; (D.17)

where

/Q ¼ diag½RQi TQi /Qi�i¼1;2;...;M ; (D.18)

/P ¼ diag½RPi TPi /Pi�i¼1;2;...;M (D.19)

and

/PQ ¼ diag½RPi SQi /Qi�i¼1;2;...;M ; (D.20)

with index i being reinstated.
The formulation allows one to assemble the eigenvalue problem from the dynamic stiffness matrix in the same way as

discussed in the main section of this paper.
There are quite a few practical problems where the attachment of out of plane particles are important. Consider the

problem depicted in Fig. D3, where an equipment rests on a simply supported beam. The equipment has its mass centre out
of the beam neutral line and this can be taken into consideration with the formulation described here. This problem
presents an exact solution developed in Ref. [21] and further improved in Ref. [22].

The results in Table D1 refer to the configurations depicted in Fig. D3. In model A, the equipment was not yet installed
on the beam. In model B, a concentrated mass was added to represent the equipment, but with incorrect flexible spans and
with the equipment mass aligned with the beam neutral line. In model C, the beam span supporting the mass was
considered rigid. Eccentricity was finally corrected in model D. The results are compared with the ones obtained with the
method discussed in Refs. [21,22]. Note that model B, wrongly, is only mass sensitive to the odd modes. Also, the exact
solution in Ref. [21,22] cannot be used in model D since it does not consider a concentrated mass off the beam neutral line.
In this case, a finite element model was used.

As a final application, consider Fig. D4, which represents the cross-section of a ship-like structure. This problem is
particularly attractive here inasmuch as it presents all the features of the linear dynamics of the framed structures so far
studied.

The geometry of the various beam elements is also given in Fig. D4, with the frames having standard mild-steel
properties, elastic modulus of E ¼ 200 GPa and density of r ¼ 7800 kg=m3.

The first four natural frequencies and mode shapes for this problem are shown in Fig. D5. They are calculated exactly,
following the theory here presented, and numerically, via the finite element programme ANSYS when using the consistent
mass matrix and rotatory inertia.
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